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Abstract 
Mitochondria are viewed nowadays not only as the powerhouse of the cells, but also as a key contributor in sig-
naling regulation of intracellular homeostasis and survival. The role of mitochondria in hypertension is a novel, 
hot topic. Although the mechanistic involved is only partly deciphered by now, attempts for exploitation of the 
results in clinical trials are ongoing, aiming alleviation of the hypertension-associated end organ dysfunctions. 
Here, we briefly examine the progress so far on: (i) the mutations in mitochondrial transfer RNA genes, as risk 
factors in maternally inherited essential hypertension, (ii) the distinctive mitochondrial traits associated with 
hypertension (mitochondrial-related oxidative stress, hyperacetylation, and Sirtuin 3 deficiency), and (iii) the 
state of art on mitochondria-targeted therapies in hypertension. The above topics point not only to the current 
trends of basic research on mitochondria - hypertension correlation, but also to novel conducts in hypertension 
prevention and therapy.
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Taking hypertension as an example, this multifac-
torial disorder implies a variety of inductors (ge-
netic, environmental, anatomical, adaptive neural, 
endocrine, humoral, and hemodynamic factors) 
that contribute to the renal, cardiac, and vascular 
damages [2]. Interestingly, more than 90% of the 
hypertensive patients are currently diagnosed with 
“essential hypertension” (EH), or hypertension with 
undetermined causes [3]. The EH develops mostly 
under the influence of genetic factors and is mater-
nally inherited [4]. It evolves with contribution of 
vascular mechanisms (endothelial dysfunction and 
reduced endothelial nitric oxide production) [5–7], 

the renin-angiotensin-aldosterone system (RAAS), 
metabolic syndrome, and a disturbed basal sym-
pathetic tone [8]. Mitochondrial dysfunction is a 
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Introduction

The nowadays concept of personalized medicine 
has been anticipated in 1903 by Sir William Osler 
(Canadian physician, 1849 –1919, “The Father of 
Modern Medicine”); in his own words “the good 
physician treats the disease; the great physician 
treats the patient who has the disease” [1]. Since 
then, the quest for identification of the key induc-
tor mechanisms of a disease, and for the right con-
duit for its alleviation still challenges the scientists. 
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(c)	 the tRNAIle A4263G mutation is linked to dimin-
ished mitochondrial protein translation, increased 
ROS levels, and mitochondrial dysfunction,

(d)	the tRNAIle T4291C mutation, involves substi-
tution of cytidine for uridine, impairs ribosomal 
binding, being correlated with metabolic defects,

(e)	 the tRNAIle A4295G mutation conducts to a de-
crease in complex III protein levels, and to reduced 
mitochondrial respiratory chain functions, 

(f)	 tRNAMet 4467 C>A (cytosine to adenine) muta-
tion contributes to oxidative stress and mitochon-
drial biogenesis dysfunction, both involved in 
maternally inherited EH [11],

(g)	 tRNA Ala 5587T>C (thymine to cytosine) and 
tRNALeu(CUN) 12280A>G (adenine to guanine) 
mutations may lead to the failure of tRNAs me-
tabolism, mitochondrial protein synthesis defects, 
and mitochondrial dysfunctions that are responsi-
ble for hypertension [12].

The mechanistic behind mt tRNA mutations is 
a novel issue to be considered in clinical manifesta-
tions of EH. Now, one can safely conclude that the 
maternally inherited EH involves mutations in mt 
tRNA that cause/aggravate mitochondrial dysfunc-
tion underlined by reduced ATP generation and 
increased ROS levels, launching the mitochondri-
al-mediated cell death pathways [3, 9].

 (ii) The distinctive mitochondrial 
traits associated with hypertension 

Hypertension is associated with oxidative stress, and 
mitochondria-derived ROS are important contributors 
to the renal and cardiovascular-related oxidative 
damages [13]. Mitochondria possess an own enzyme 
equipment that keeps ROS production under control. 
When the antioxidant capacity is exceeded, the oxi-
dative stress is installed. The potent antioxidant mel-
atonin is synthesized locally and is also taken up by 
mitochondria; it scavenges the toxic free radicals and 
regulates also the renin–angiotensin system [14]. The 
efficiency of antioxidants is proven by the fact that 
targeting mitochondrial oxidative stress has anti-hy-
pertensive potential. Among the antioxidants with 
therapeutic potential we quote the superoxide dis-
mutase (SOD) mimetics, which reduce also the blood 
pressure [15] and the targeting of mitochondrial Cy-
clophilin D, a source of toxic superoxide anions [16]. 
Furthermore, during post-translational modifications 

newly recognized attribute of EH. It is associated 
with: (i) reduced electron transport chain activity 
and ATP generation, (ii) overproduction of reactive 
oxygen species (ROS), such as the harmful superox-
ide anions and hydroxyl radicals (that do not diffuse 
across membranes) and the hydrogen peroxide (a 
freely diffusible molecule), and (iii) the impaired mi-
tochondrial dynamics. Recently, the investigation 
of the mitochondrial genome uncovered several mo-
lecular mechanisms underlying EH. Here we pro-
vide a survey on the followings: (i) the mutations in 
mitochondrial (mt) – transfer RNA (tRNA) genes, 
inherited risk factors in EH, (ii) the distinctive mi-
tochondrial traits associated with hypertension, 
i.e. mitochondrial oxidative stress, mitochondria 
hyperacetylation, and Sirtuin 3 (Sirt3) deficiency, 
and (iii) the mitochondria-targeted therapies in 
hypertension.

(i) The mutations in mitochondrial 
(mt) – transfer RNA (tRNA) genes, 
inherited risk factors in EH

The genome of the mammalian mtDNA consists 
in 37 genes: 22 tRNAs, 2 rRNAs (12S and 16S 
rRNA), and 13 mRNAs encoding the proteins of 
the electron transport chain. As mitochondria con-
tain less repair and protection systems, compared 
to the nucleus, the mtDNA is susceptible to muta-
tions (nucleotide modifications). The most vulnera-
ble to mutations are the 22 tRNAs, a modification 
acknowledged as one of the molecular bases of EH. 
Representative mt-tRNA mutations and the corre-
sponding consequences are the followings [3, 9]: 

(a)	 the tRNAMet A4435G point mutation, that re-
duces with ~40-50% the tRNAMet level, alters 
the tRNAMet structure, impairs mt-tRNA me-
tabolism, decreases ATP synthesis and mitochon-
drial membrane potential, and increases ROS 
generation. Thus, installment of mitochondrial 
dysfunction appears to be the ultimate contribu-
tor to EH in families carrying the A4435G muta-
tion [10],

(b)	the tRNAMet and tRNAGln A4401G mutations 
conduct to defective processing and defficiency of 
tRNAMet transcription, associated with reduced 
mitochondrial oxygen consumption rate; the mu-
tation is conserved for generations in the maternal 
lineage of Han Chinese families with EH,
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(iii) The mitochondria-targeted  
therapies in hypertension.

  Over recent years, the mitochondria targeting 
emerged as a promising strategy for mitigation 
of hypertension-related end-organ damages. A valu-
able approach is the use of mitochondria-targeted 
antioxidants. Examples are: 

(i)	 mitoTEMPO, that attenuates endothelial dysfunc-
tion (characterized by oxidative stress, reduced 
nitric oxide generation, and impeded vasorelax-
ation) and reduces blood pressure, 

(ii)	 mitoEbselen, that diminishes vascular oxidative 
stress and significantly reduces blood pressure, 

(iii) 	Ubiquinone, that improves oxidative phosphor-
ylation and reduces “electron leakage” in mito-
chondria [15],

(iv)	 the use of cardiolipin-protective compound Benda-
via (Stealth BioTherapeutics), that protects the struc-
ture of mitochondrial cristae and promotes oxidative 
phosphorylation; it is well tolerated as assessed by 
Multiple Phase 1 and phase 2 clinical trials [15].

What is at the horizon in translation of mito-
chondria-targeted antioxidants from the bench to 
the bedside of hypertensive patients? One can em-
phasize the future exploitation of SOD2 mimetics 
[27], of Sirt3 agonists [17], and of melatonin that 
generates protective effects by both antioxidant 
and mitochondrial-related anti-inflammatory traits 
[28]. The ongoing studies are focused on under-
standing the mechanisms that govern the relation-
ship between the decline in CXCR4 signaling (in 
late EPCs), mitochondrial dysfunction, and im-
paired angiogenic capacity of EPCs [24]. Moreover, 
mitochondrial  hyperacetylation requires in-depth 
studies on the role of acetyl-CoA-binding protein 
acetyltransferase [29], and on the still unclear 
mechanism of mitochondrial biogenesis dysfunc-
tion associated with the tRNAMet C4467A muta-
tion [11]. 

From the data reported so far, it is obvious 
that further experimental studies and clinical tri-
als are needed to confirm the efficacy and safety 
of mitochondrial targeting; however,  both basic 
researchers and clinicians should be aware that the 
mitochondria-targeted compounds may encompass 
also non-mitochondrial effects, that contribute to at-
tenuation of hypertension-related dysfunctions [30].

of antioxidant SOD2 the positively charged lysine resi-
dues within the highly conserved catalytic center (in 
positions 68 and 122) are subjected to hyperacetyl-
ation. This reaction induces SOD2 conformational 
changes, steric hindrance, and the loss of electrostatic 
guidance for the superoxide anions within the active 
center. Nowadays, hyperacetylation is considered a 
prognostic factor in hypertension [17].  A close related 
partner of SOD2 is the NAD+-dependent deacetylase 
Sirt3; its reduced expression and redox inactivation 
leads to SOD2 downregulation and contributes to 
the pathogenesis of hypertension [18].

 The alterations of mitochondrial dynamics in white 
adipose tissue were reported as contributors to the 
development and maintenance of  hypertension-re-
lated to obesity [19].

Previous reports emphasized that the dynamic 
shape changes of mitochondria contributes to bio-
energetics capacity preservation and mtDNA ho-
meostasis [20, 21].These roles are accomplished by 
three essential processes: 

(i)	 the “fusion” of dysfunctional mitochondria with 
“healthy” ones, with participation of specific mol-
ecules: mitofusin1 (MFN1), mitofusin 2 (MFN2), 
and optic atrophy 1 (OPA-1) [22], 

(ii)	 the opposite “fission”(fragmentation) process that 
removes the malfunctional part, with involve-
ment of dynamin-related protein 1 (Drp 1) and 
mitochondrial fission 1 protein (Fis1) [23], and 

(iii)	 the final autophagic degradation of mitochon-
dria, known as mitophagy. Recently, a correlation 
was reported between mitochondrial dysfunction 
in endothelial progenitor cells (EPCs) and capil-
lary rarefaction observed in hypertension; the 
mechanism consists in the deficient CXCR4/
JAK2/SIRT5 signaling pathway, and indicates the 
potential of late EPCs mitochondria as a target 
for correction of the lower angiogenic ability in 
hypertension [24]. 

Interestingly, mtDNA appears in urine, and their 
elevated copy numbers in hypertensive patients in-
dicate mitochondrial injury associated with renal 
dysfunction [25]; it is suggested that the mitoprotec-
tive drug elamipretide reduces the urinary mtDNA 
copy numbers at percutaneous transluminal angio-
plasty, improving blood pressure and the kidney 
functional outcomes [26].
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Conclusion

The deciphering of mitochondria-hypertension re-
lationship provides solid grounds for therapeutic ex-
ploitation. The topic is challenging, and the ongoing 
research is directed towards identification of mito-
chondria-targeted compounds with higher therapeutic 
efficiency in prevention /alleviation of hypertension. 
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